314 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			HLSL
		
	
	
	
	
	
			
		
		
	
	
			314 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			HLSL
		
	
	
	
	
	
| #ifndef UNITY_GEOMETRICTOOLS_INCLUDED
 | |
| #define UNITY_GEOMETRICTOOLS_INCLUDED
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Transform functions
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| // Rotate around a pivot point and an axis
 | |
| float3 Rotate(float3 pivot, float3 position, float3 rotationAxis, float angle)
 | |
| {
 | |
|     rotationAxis = normalize(rotationAxis);
 | |
|     float3 cpa = pivot + rotationAxis * dot(rotationAxis, position - pivot);
 | |
|     return cpa + ((position - cpa) * cos(angle) + cross(rotationAxis, (position - cpa)) * sin(angle));
 | |
| }
 | |
| 
 | |
| float3x3 RotationFromAxisAngle(float3 A, float sinAngle, float cosAngle)
 | |
| {
 | |
|     float c = cosAngle;
 | |
|     float s = sinAngle;
 | |
| 
 | |
|     return float3x3(A.x * A.x * (1 - c) + c,        A.x * A.y * (1 - c) - A.z * s,  A.x * A.z * (1 - c) + A.y * s,
 | |
|                     A.x * A.y * (1 - c) + A.z * s,  A.y * A.y * (1 - c) + c,        A.y * A.z * (1 - c) - A.x * s,
 | |
|                     A.x * A.z * (1 - c) - A.y * s,  A.y * A.z * (1 - c) + A.x * s,  A.z * A.z * (1 - c) + c);
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Solver
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| // Solves the quadratic equation of the form: a*t^2 + b*t + c = 0.
 | |
| // Returns 'false' if there are no real roots, 'true' otherwise.
 | |
| // Ensures that roots.x <= roots.y.
 | |
| bool SolveQuadraticEquation(float a, float b, float c, out float2 roots)
 | |
| {
 | |
|     float det = Sq(b) - 4.0 * a * c;
 | |
| 
 | |
|     float sqrtDet = sqrt(det);
 | |
|     roots.x = (-b - sign(a) * sqrtDet) / (2.0 * a);
 | |
|     roots.y = (-b + sign(a) * sqrtDet) / (2.0 * a);
 | |
| 
 | |
|     return (det >= 0.0);
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Intersection functions
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| bool IntersectRayAABB(float3 rayOrigin, float3 rayDirection,
 | |
|                       float3 boxMin,    float3 boxMax,
 | |
|                       float  tMin,       float tMax,
 | |
|                   out float  tEntr,  out float tExit)
 | |
| {
 | |
|     // Could be precomputed. Clamp to avoid INF. clamp() is a single ALU on GCN.
 | |
|     // rcp(FLT_EPS) = 16,777,216, which is large enough for our purposes,
 | |
|     // yet doesn't cause a lot of numerical issues associated with FLT_MAX.
 | |
|     float3 rayDirInv = clamp(rcp(rayDirection), -rcp(FLT_EPS), rcp(FLT_EPS));
 | |
| 
 | |
|     // Perform ray-slab intersection (component-wise).
 | |
|     float3 t0 = boxMin * rayDirInv - (rayOrigin * rayDirInv);
 | |
|     float3 t1 = boxMax * rayDirInv - (rayOrigin * rayDirInv);
 | |
| 
 | |
|     // Find the closest/farthest distance (component-wise).
 | |
|     float3 tSlabEntr = min(t0, t1);
 | |
|     float3 tSlabExit = max(t0, t1);
 | |
| 
 | |
|     // Find the farthest entry and the nearest exit.
 | |
|     tEntr = Max3(tSlabEntr.x, tSlabEntr.y, tSlabEntr.z);
 | |
|     tExit = Min3(tSlabExit.x, tSlabExit.y, tSlabExit.z);
 | |
| 
 | |
|     // Clamp to the range.
 | |
|     tEntr = max(tEntr, tMin);
 | |
|     tExit = min(tExit, tMax);
 | |
| 
 | |
|     return tEntr < tExit;
 | |
| }
 | |
| 
 | |
| // This simplified version assume that we care about the result only when we are inside the box
 | |
| float IntersectRayAABBSimple(float3 start, float3 dir, float3 boxMin, float3 boxMax)
 | |
| {
 | |
|     float3 invDir = rcp(dir);
 | |
| 
 | |
|     // Find the ray intersection with box plane
 | |
|     float3 rbmin = (boxMin - start) * invDir;
 | |
|     float3 rbmax = (boxMax - start) * invDir;
 | |
| 
 | |
|     float3 rbminmax = float3((dir.x > 0.0) ? rbmax.x : rbmin.x, (dir.y > 0.0) ? rbmax.y : rbmin.y, (dir.z > 0.0) ? rbmax.z : rbmin.z);
 | |
| 
 | |
|     return min(min(rbminmax.x, rbminmax.y), rbminmax.z);
 | |
| }
 | |
| 
 | |
| // Assume Sphere is at the origin (i.e start = position - spherePosition)
 | |
| bool IntersectRaySphere(float3 start, float3 dir, float radius, out float2 intersections)
 | |
| {
 | |
|     float a = dot(dir, dir);
 | |
|     float b = dot(dir, start) * 2.0;
 | |
|     float c = dot(start, start) - radius * radius;
 | |
| 
 | |
|     return SolveQuadraticEquation(a, b, c, intersections);
 | |
| }
 | |
| 
 | |
| // This simplified version assume that we care about the result only when we are inside the sphere
 | |
| // Assume Sphere is at the origin (i.e start = position - spherePosition) and dir is normalized
 | |
| // Ref: http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
 | |
| float IntersectRaySphereSimple(float3 start, float3 dir, float radius)
 | |
| {
 | |
|     float b = dot(dir, start) * 2.0;
 | |
|     float c = dot(start, start) - radius * radius;
 | |
|     float discriminant = b * b - 4.0 * c;
 | |
| 
 | |
|     return abs(sqrt(discriminant) - b) * 0.5;
 | |
| }
 | |
| 
 | |
| float3 IntersectRayPlane(float3 rayOrigin, float3 rayDirection, float3 planeOrigin, float3 planeNormal)
 | |
| {
 | |
|     float dist = dot(planeNormal, planeOrigin - rayOrigin) / dot(planeNormal, rayDirection);
 | |
|     return rayOrigin + rayDirection * dist;
 | |
| }
 | |
| 
 | |
| // Same as above but return intersection distance and true / false if the ray hit/miss
 | |
| bool IntersectRayPlane(float3 rayOrigin, float3 rayDirection, float3 planePosition, float3 planeNormal, out float t)
 | |
| {
 | |
|     bool res = false;
 | |
|     t = -1.0;
 | |
| 
 | |
|     float denom = dot(planeNormal, rayDirection);
 | |
|     if (abs(denom) > 1e-5)
 | |
|     {
 | |
|         float3 d = planePosition - rayOrigin;
 | |
|         t = dot(d, planeNormal) / denom;
 | |
|         res = (t >= 0);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| bool RayPlaneSegmentIntersect(in float3 rayOrigin, in float3 rayDirection, float3 planeNormal, float planeDistance, inout float3 intersectionPoint)
 | |
| {
 | |
|     float denom = dot(rayDirection, planeNormal);
 | |
|     float lambda = (denom != 0.0) ? (planeDistance - dot(rayOrigin, planeNormal)) / denom : -1.0;
 | |
|     if ((lambda >= 0.0) && (lambda <= 1.0))
 | |
|     {
 | |
|         intersectionPoint = rayOrigin + lambda * rayDirection;
 | |
|         return true;
 | |
|     }
 | |
|     else
 | |
|         return false;
 | |
| }
 | |
| 
 | |
| // Can support cones with an elliptic base: pre-scale 'coneAxisX' and 'coneAxisY' by (h/r_x) and (h/r_y).
 | |
| // Returns parametric distances 'tEntr' and 'tExit' along the ray,
 | |
| // subject to constraints 'tMin' and 'tMax'.
 | |
| bool IntersectRayCone(float3 rayOrigin,  float3 rayDirection,
 | |
|                       float3 coneOrigin, float3 coneDirection,
 | |
|                       float3 coneAxisX,  float3 coneAxisY,
 | |
|                       float tMin, float tMax,
 | |
|                       out float tEntr, out float tExit)
 | |
| {
 | |
|     // Inverse transform the ray into a coordinate system with the cone at the origin facing along the Z axis.
 | |
|     float3x3 rotMat = float3x3(coneAxisX, coneAxisY, coneDirection);
 | |
| 
 | |
|     float3 o = mul(rotMat, rayOrigin - coneOrigin);
 | |
|     float3 d = mul(rotMat, rayDirection);
 | |
| 
 | |
|     // Cone equation (facing along Z): (h/r*x)^2 + (h/r*y)^2 - z^2 = 0.
 | |
|     // Cone axes are premultiplied with (h/r).
 | |
|     // Set up the quadratic equation: a*t^2 + b*t + c = 0.
 | |
|     float a = d.x * d.x + d.y * d.y - d.z * d.z;
 | |
|     float b = o.x * d.x + o.y * d.y - o.z * d.z;
 | |
|     float c = o.x * o.x + o.y * o.y - o.z * o.z;
 | |
| 
 | |
|     float2 roots;
 | |
| 
 | |
|     // Check whether we have at least 1 root.
 | |
|     bool hit = SolveQuadraticEquation(a, 2 * b, c, roots);
 | |
| 
 | |
|     tEntr = roots.x;
 | |
|     tExit = roots.y;
 | |
|     float3 pEntr = o + tEntr * d;
 | |
|     float3 pExit = o + tExit * d;
 | |
| 
 | |
|     // Clip the negative cone.
 | |
|     bool pEntrNeg = pEntr.z < 0;
 | |
|     bool pExitNeg = pExit.z < 0;
 | |
|     if (pEntrNeg && pExitNeg) { hit = false; }
 | |
|     if (pEntrNeg) { tEntr = tExit; tExit = tMax; }
 | |
|     if (pExitNeg) { tExit = tEntr; tEntr = tMin; }
 | |
| 
 | |
|     // Clamp using the values passed into the function.
 | |
|     tEntr = clamp(tEntr, tMin, tMax);
 | |
|     tExit = clamp(tExit, tMin, tMax);
 | |
| 
 | |
|     // Check for grazing intersections.
 | |
|     if (tEntr == tExit) { hit = false; }
 | |
| 
 | |
|     return hit;
 | |
| }
 | |
| 
 | |
| bool IntersectSphereAABB(float3 position, float radius, float3 aabbMin, float3 aabbMax)
 | |
| {
 | |
|   float x = max(aabbMin.x, min(position.x, aabbMax.x));
 | |
|   float y = max(aabbMin.y, min(position.y, aabbMax.y));
 | |
|   float z = max(aabbMin.z, min(position.z, aabbMax.z));
 | |
|   float distance2 = ((x - position.x) * (x - position.x) + (y - position.y) * (y - position.y) + (z - position.z) * (z - position.z));
 | |
|   return distance2 < radius * radius;
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Miscellaneous functions
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| // Box is AABB
 | |
| float DistancePointBox(float3 position, float3 boxMin, float3 boxMax)
 | |
| {
 | |
|     return length(max(max(position - boxMax, boxMin - position), float3(0.0, 0.0, 0.0)));
 | |
| }
 | |
| 
 | |
| float3 ProjectPointOnPlane(float3 position, float3 planePosition, float3 planeNormal)
 | |
| {
 | |
|     return position - (dot(position - planePosition, planeNormal) * planeNormal);
 | |
| }
 | |
| 
 | |
| // Plane equation: {(a, b, c) = N, d = -dot(N, P)}.
 | |
| // Returns the distance from the plane to the point 'p' along the normal.
 | |
| // Positive -> in front (above), negative -> behind (below).
 | |
| float DistanceFromPlane(float3 p, float4 plane)
 | |
| {
 | |
|     return dot(float4(p, 1.0), plane);
 | |
| }
 | |
| 
 | |
| // Returns 'true' if the triangle is outside of the frustum.
 | |
| // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
 | |
| bool CullTriangleFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
 | |
| {
 | |
|     bool outside = false;
 | |
| 
 | |
|     for (int i = 0; i < numPlanes; i++)
 | |
|     {
 | |
|         // If all 3 points are behind any of the planes, we cull.
 | |
|         outside = outside || Max3(DistanceFromPlane(p0, frustumPlanes[i]),
 | |
|                                   DistanceFromPlane(p1, frustumPlanes[i]),
 | |
|                                   DistanceFromPlane(p2, frustumPlanes[i])) < epsilon;
 | |
|     }
 | |
| 
 | |
|     return outside;
 | |
| }
 | |
| 
 | |
| // Returns 'true' if the edge of the triangle is outside of the frustum.
 | |
| // The edges are defined s.t. they are on the opposite side of the point with the given index.
 | |
| // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
 | |
| //output packing:
 | |
| // x,y,z - one component per triangle edge, true if outside, false otherwise
 | |
| // w - true if entire triangle is outside of at least 1 plane of the frustum, false otherwise
 | |
| bool4 CullFullTriangleAndEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
 | |
| {
 | |
|     bool4 edgesOutsideXYZ_triangleOutsideW = false;
 | |
| 
 | |
|     for (int i = 0; i < numPlanes; i++)
 | |
|     {
 | |
|         bool3 pointsOutside = bool3(DistanceFromPlane(p0, frustumPlanes[i]) < epsilon,
 | |
|                                     DistanceFromPlane(p1, frustumPlanes[i]) < epsilon,
 | |
|                                     DistanceFromPlane(p2, frustumPlanes[i]) < epsilon);
 | |
| 
 | |
|         bool3 edgesOutside;
 | |
|             // If both points of the edge are behind any of the planes, we cull.
 | |
|         edgesOutside.x = pointsOutside.y && pointsOutside.z;
 | |
|         edgesOutside.y = pointsOutside.x && pointsOutside.z;
 | |
|         edgesOutside.z = pointsOutside.x && pointsOutside.y;
 | |
| 
 | |
|         edgesOutsideXYZ_triangleOutsideW = bool4(edgesOutsideXYZ_triangleOutsideW.x || edgesOutside.x,
 | |
|                                                  edgesOutsideXYZ_triangleOutsideW.y || edgesOutside.y,
 | |
|                                                  edgesOutsideXYZ_triangleOutsideW.z || edgesOutside.z,
 | |
|                                                  all(pointsOutside));
 | |
|     }
 | |
| 
 | |
|     return edgesOutsideXYZ_triangleOutsideW;
 | |
| }
 | |
| 
 | |
| // Returns 'true' if the edge of the triangle is outside of the frustum.
 | |
| // The edges are defined s.t. they are on the opposite side of the point with the given index.
 | |
| // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
 | |
| //output packing:
 | |
| // x,y,z - one component per triangle edge, true if outside, false otherwise
 | |
| bool3 CullTriangleEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
 | |
| {
 | |
|     return CullFullTriangleAndEdgesFrustum(p0, p1, p2, epsilon, frustumPlanes, numPlanes).xyz;
 | |
| }
 | |
| 
 | |
| bool CullTriangleBackFaceView(float3 p0, float3 p1, float3 p2, float epsilon, float3 V, float winding)
 | |
| {
 | |
|     float3 edge1 = p1 - p0;
 | |
|     float3 edge2 = p2 - p0;
 | |
| 
 | |
|     float3 N = cross(edge1, edge2);
 | |
|     float  NdotV = dot(N, V) * winding;
 | |
| 
 | |
|     // Optimize:
 | |
|     // NdotV / (length(N) * length(V)) < Epsilon
 | |
|     // NdotV < Epsilon * length(N) * length(V)
 | |
|     // NdotV < Epsilon * sqrt(dot(N, N)) * sqrt(dot(V, V))
 | |
|     // NdotV < Epsilon * sqrt(dot(N, N) * dot(V, V))
 | |
|     return NdotV < epsilon * sqrt(dot(N, N) * dot(V, V));
 | |
| }
 | |
| 
 | |
| // Returns 'true' if a triangle defined by 3 vertices is back-facing.
 | |
| // 'epsilon' is the (negative) value of dot(N, V) below which we cull the triangle.
 | |
| // 'winding' can be used to change the order: pass 1 for (p0 -> p1 -> p2), or -1 for (p0 -> p2 -> p1).
 | |
| bool CullTriangleBackFace(float3 p0, float3 p1, float3 p2, float epsilon, float3 viewPos, float winding)
 | |
| {
 | |
|     float3 V = viewPos - p0;
 | |
|     return CullTriangleBackFaceView(p0, p1, p2, epsilon, V, winding);
 | |
| }
 | |
| 
 | |
| #endif // UNITY_GEOMETRICTOOLS_INCLUDED
 |