172 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
| // Cellular noise ("Worley noise") in 3D in GLSL.
 | |
| // Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
 | |
| // This code is released under the conditions of the MIT license.
 | |
| // See LICENSE file for details.
 | |
| // https://github.com/stegu/webgl-noise
 | |
| 
 | |
| using static Unity.Mathematics.math;
 | |
| 
 | |
| namespace Unity.Mathematics
 | |
| {
 | |
|     public static partial class noise
 | |
|     {
 | |
|         /// <summary>
 | |
|         /// 3D Cellular noise ("Worley noise") with 3x3x3 search region for good F2 everywhere, but a lot slower than the 2x2x2 version.
 | |
|         /// </summary>
 | |
|         /// <param name="P">A point in 2D space.</param>
 | |
|         /// <returns>Feature points. F1 is in the x component, F2 in the y component.</returns>
 | |
|         // The code below is a bit scary even to its author,
 | |
|         // but it has at least half decent performance on a
 | |
|         // math.modern GPU. In any case, it beats any software
 | |
|         // implementation of Worley noise hands down.
 | |
| 
 | |
|         public static float2 cellular(float3 P)
 | |
|         {
 | |
|             const float K = 0.142857142857f; // 1/7
 | |
|             const float Ko = 0.428571428571f; // 1/2-K/2
 | |
|             const float K2 = 0.020408163265306f; // 1/(7*7)
 | |
|             const float Kz = 0.166666666667f; // 1/6
 | |
|             const float Kzo = 0.416666666667f; // 1/2-1/6*2
 | |
|             const float jitter = 1.0f; // smaller jitter gives more regular pattern
 | |
| 
 | |
|             float3 Pi = mod289(floor(P));
 | |
|             float3 Pf = frac(P) - 0.5f;
 | |
| 
 | |
|             float3 Pfx = Pf.x + float3(1.0f, 0.0f, -1.0f);
 | |
|             float3 Pfy = Pf.y + float3(1.0f, 0.0f, -1.0f);
 | |
|             float3 Pfz = Pf.z + float3(1.0f, 0.0f, -1.0f);
 | |
| 
 | |
|             float3 p = permute(Pi.x + float3(-1.0f, 0.0f, 1.0f));
 | |
|             float3 p1 = permute(p + Pi.y - 1.0f);
 | |
|             float3 p2 = permute(p + Pi.y);
 | |
|             float3 p3 = permute(p + Pi.y + 1.0f);
 | |
| 
 | |
|             float3 p11 = permute(p1 + Pi.z - 1.0f);
 | |
|             float3 p12 = permute(p1 + Pi.z);
 | |
|             float3 p13 = permute(p1 + Pi.z + 1.0f);
 | |
| 
 | |
|             float3 p21 = permute(p2 + Pi.z - 1.0f);
 | |
|             float3 p22 = permute(p2 + Pi.z);
 | |
|             float3 p23 = permute(p2 + Pi.z + 1.0f);
 | |
| 
 | |
|             float3 p31 = permute(p3 + Pi.z - 1.0f);
 | |
|             float3 p32 = permute(p3 + Pi.z);
 | |
|             float3 p33 = permute(p3 + Pi.z + 1.0f);
 | |
| 
 | |
|             float3 ox11 = frac(p11 * K) - Ko;
 | |
|             float3 oy11 = mod7(floor(p11 * K)) * K - Ko;
 | |
|             float3 oz11 = floor(p11 * K2) * Kz - Kzo; // p11 < 289 guaranteed
 | |
| 
 | |
|             float3 ox12 = frac(p12 * K) - Ko;
 | |
|             float3 oy12 = mod7(floor(p12 * K)) * K - Ko;
 | |
|             float3 oz12 = floor(p12 * K2) * Kz - Kzo;
 | |
| 
 | |
|             float3 ox13 = frac(p13 * K) - Ko;
 | |
|             float3 oy13 = mod7(floor(p13 * K)) * K - Ko;
 | |
|             float3 oz13 = floor(p13 * K2) * Kz - Kzo;
 | |
| 
 | |
|             float3 ox21 = frac(p21 * K) - Ko;
 | |
|             float3 oy21 = mod7(floor(p21 * K)) * K - Ko;
 | |
|             float3 oz21 = floor(p21 * K2) * Kz - Kzo;
 | |
| 
 | |
|             float3 ox22 = frac(p22 * K) - Ko;
 | |
|             float3 oy22 = mod7(floor(p22 * K)) * K - Ko;
 | |
|             float3 oz22 = floor(p22 * K2) * Kz - Kzo;
 | |
| 
 | |
|             float3 ox23 = frac(p23 * K) - Ko;
 | |
|             float3 oy23 = mod7(floor(p23 * K)) * K - Ko;
 | |
|             float3 oz23 = floor(p23 * K2) * Kz - Kzo;
 | |
| 
 | |
|             float3 ox31 = frac(p31 * K) - Ko;
 | |
|             float3 oy31 = mod7(floor(p31 * K)) * K - Ko;
 | |
|             float3 oz31 = floor(p31 * K2) * Kz - Kzo;
 | |
| 
 | |
|             float3 ox32 = frac(p32 * K) - Ko;
 | |
|             float3 oy32 = mod7(floor(p32 * K)) * K - Ko;
 | |
|             float3 oz32 = floor(p32 * K2) * Kz - Kzo;
 | |
| 
 | |
|             float3 ox33 = frac(p33 * K) - Ko;
 | |
|             float3 oy33 = mod7(floor(p33 * K)) * K - Ko;
 | |
|             float3 oz33 = floor(p33 * K2) * Kz - Kzo;
 | |
| 
 | |
|             float3 dx11 = Pfx + jitter * ox11;
 | |
|             float3 dy11 = Pfy.x + jitter * oy11;
 | |
|             float3 dz11 = Pfz.x + jitter * oz11;
 | |
| 
 | |
|             float3 dx12 = Pfx + jitter * ox12;
 | |
|             float3 dy12 = Pfy.x + jitter * oy12;
 | |
|             float3 dz12 = Pfz.y + jitter * oz12;
 | |
| 
 | |
|             float3 dx13 = Pfx + jitter * ox13;
 | |
|             float3 dy13 = Pfy.x + jitter * oy13;
 | |
|             float3 dz13 = Pfz.z + jitter * oz13;
 | |
| 
 | |
|             float3 dx21 = Pfx + jitter * ox21;
 | |
|             float3 dy21 = Pfy.y + jitter * oy21;
 | |
|             float3 dz21 = Pfz.x + jitter * oz21;
 | |
| 
 | |
|             float3 dx22 = Pfx + jitter * ox22;
 | |
|             float3 dy22 = Pfy.y + jitter * oy22;
 | |
|             float3 dz22 = Pfz.y + jitter * oz22;
 | |
| 
 | |
|             float3 dx23 = Pfx + jitter * ox23;
 | |
|             float3 dy23 = Pfy.y + jitter * oy23;
 | |
|             float3 dz23 = Pfz.z + jitter * oz23;
 | |
| 
 | |
|             float3 dx31 = Pfx + jitter * ox31;
 | |
|             float3 dy31 = Pfy.z + jitter * oy31;
 | |
|             float3 dz31 = Pfz.x + jitter * oz31;
 | |
| 
 | |
|             float3 dx32 = Pfx + jitter * ox32;
 | |
|             float3 dy32 = Pfy.z + jitter * oy32;
 | |
|             float3 dz32 = Pfz.y + jitter * oz32;
 | |
| 
 | |
|             float3 dx33 = Pfx + jitter * ox33;
 | |
|             float3 dy33 = Pfy.z + jitter * oy33;
 | |
|             float3 dz33 = Pfz.z + jitter * oz33;
 | |
| 
 | |
|             float3 d11 = dx11 * dx11 + dy11 * dy11 + dz11 * dz11;
 | |
|             float3 d12 = dx12 * dx12 + dy12 * dy12 + dz12 * dz12;
 | |
|             float3 d13 = dx13 * dx13 + dy13 * dy13 + dz13 * dz13;
 | |
|             float3 d21 = dx21 * dx21 + dy21 * dy21 + dz21 * dz21;
 | |
|             float3 d22 = dx22 * dx22 + dy22 * dy22 + dz22 * dz22;
 | |
|             float3 d23 = dx23 * dx23 + dy23 * dy23 + dz23 * dz23;
 | |
|             float3 d31 = dx31 * dx31 + dy31 * dy31 + dz31 * dz31;
 | |
|             float3 d32 = dx32 * dx32 + dy32 * dy32 + dz32 * dz32;
 | |
|             float3 d33 = dx33 * dx33 + dy33 * dy33 + dz33 * dz33;
 | |
| 
 | |
|             // Sort out the two smallest distances (F1, F2)
 | |
|             // Do it right and sort out both F1 and F2
 | |
|             float3 d1a = min(d11, d12);
 | |
|             d12 = max(d11, d12);
 | |
|             d11 = min(d1a, d13); // Smallest now not in d12 or d13
 | |
|             d13 = max(d1a, d13);
 | |
|             d12 = min(d12, d13); // 2nd smallest now not in d13
 | |
|             float3 d2a = min(d21, d22);
 | |
|             d22 = max(d21, d22);
 | |
|             d21 = min(d2a, d23); // Smallest now not in d22 or d23
 | |
|             d23 = max(d2a, d23);
 | |
|             d22 = min(d22, d23); // 2nd smallest now not in d23
 | |
|             float3 d3a = min(d31, d32);
 | |
|             d32 = max(d31, d32);
 | |
|             d31 = min(d3a, d33); // Smallest now not in d32 or d33
 | |
|             d33 = max(d3a, d33);
 | |
|             d32 = min(d32, d33); // 2nd smallest now not in d33
 | |
|             float3 da = min(d11, d21);
 | |
|             d21 = max(d11, d21);
 | |
|             d11 = min(da, d31); // Smallest now in d11
 | |
|             d31 = max(da, d31); // 2nd smallest now not in d31
 | |
|             d11.xy = (d11.x < d11.y) ? d11.xy : d11.yx;
 | |
|             d11.xz = (d11.x < d11.z) ? d11.xz : d11.zx; // d11.x now smallest
 | |
|             d12 = min(d12, d21); // 2nd smallest now not in d21
 | |
|             d12 = min(d12, d22); // nor in d22
 | |
|             d12 = min(d12, d31); // nor in d31
 | |
|             d12 = min(d12, d32); // nor in d32
 | |
|             d11.yz = min(d11.yz, d12.xy); // nor in d12.yz
 | |
|             d11.y = min(d11.y, d12.z); // Only two more to go
 | |
|             d11.y = min(d11.y, d11.z); // Done! (Phew!)
 | |
|             return sqrt(d11.xy); // F1, F2
 | |
|         }
 | |
|     }
 | |
| }
 |