307 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
| using System.Diagnostics;
 | |
| 
 | |
| namespace Unity.Burst.Intrinsics
 | |
| {
 | |
|     public unsafe static partial class X86
 | |
|     {
 | |
|         /// <summary>
 | |
|         /// F16C intrinsics
 | |
|         /// </summary>
 | |
|         public static class F16C
 | |
|         {
 | |
|             /// <summary>
 | |
|             /// Evaluates to true at compile time if F16C intrinsics are supported.
 | |
|             ///
 | |
|             /// Burst ties F16C support to AVX2 support to simplify feature sets to support.
 | |
|             /// </summary>
 | |
|             public static bool IsF16CSupported { get { return Avx2.IsAvx2Supported; } }
 | |
| 
 | |
|             /// <summary>
 | |
|             /// Converts a half (hiding in a ushort) to a float (hiding in a uint).
 | |
|             /// </summary>
 | |
|             /// <param name="h">The half to convert</param>
 | |
|             /// <returns>The float result</returns>
 | |
|             [DebuggerStepThrough]
 | |
|             private static uint HalfToFloat(ushort h)
 | |
|             {
 | |
|                 var signed = (h & 0x8000u) != 0;
 | |
|                 var exponent = (h >> 10) & 0x1fu;
 | |
|                 var mantissa = h & 0x3ffu;
 | |
| 
 | |
|                 var result = signed ? 0x80000000u : 0u;
 | |
| 
 | |
|                 if (!(exponent == 0 && mantissa == 0))
 | |
|                 {
 | |
|                     // Denormal (converts to normalized)
 | |
|                     if (exponent == 0)
 | |
|                     {
 | |
|                         // Adjust mantissa so it's normalized (and keep track of exponent adjustment)
 | |
|                         exponent = -1;
 | |
|                         do
 | |
|                         {
 | |
|                             exponent++;
 | |
|                             mantissa <<= 1;
 | |
|                         } while ((mantissa & 0x400) == 0);
 | |
| 
 | |
|                         result |= (uint)((127 - 15 - exponent) << 23);
 | |
| 
 | |
|                         // Have to re-mask the mantissa here because we've been shifting bits up.
 | |
|                         result |= (mantissa & 0x3ff) << 13;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         var isInfOrNan = exponent == 0x1f;
 | |
|                         result |= (uint)(isInfOrNan ? 255 : (127 - 15 + exponent) << 23);
 | |
|                         result |= mantissa << 13;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 return result;
 | |
|             }
 | |
| 
 | |
|             /// <summary>
 | |
|             /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.
 | |
|             /// </summary>
 | |
|             /// <remarks>
 | |
|             /// **** vcvtph2ps xmm, xmm
 | |
|             /// </remarks>
 | |
| 			/// <param name="a">Vector a</param>
 | |
| 			/// <returns>Vector</returns>
 | |
|             [DebuggerStepThrough]
 | |
|             public static v128 cvtph_ps(v128 a)
 | |
|             {
 | |
|                 return new v128(HalfToFloat(a.UShort0), HalfToFloat(a.UShort1), HalfToFloat(a.UShort2), HalfToFloat(a.UShort3));
 | |
|             }
 | |
| 
 | |
|             /// <summary>
 | |
|             /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.
 | |
|             /// </summary>
 | |
|             /// <remarks>
 | |
|             /// **** vcvtph2ps ymm, xmm
 | |
|             /// </remarks>
 | |
| 			/// <param name="a">Vector a</param>
 | |
| 			/// <returns>Vector</returns>
 | |
|             [DebuggerStepThrough]
 | |
|             public static v256 mm256_cvtph_ps(v128 a)
 | |
|             {
 | |
|                 return new v256(HalfToFloat(a.UShort0), HalfToFloat(a.UShort1), HalfToFloat(a.UShort2), HalfToFloat(a.UShort3), HalfToFloat(a.UShort4), HalfToFloat(a.UShort5), HalfToFloat(a.UShort6), HalfToFloat(a.UShort7));
 | |
|             }
 | |
| 
 | |
|             // Using ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
 | |
|             private static readonly ushort[] BaseTable =
 | |
|             {
 | |
|                 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
 | |
|                 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
 | |
|                 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
 | |
|                 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
 | |
|                 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
 | |
|                 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
 | |
|                 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100,
 | |
|                 0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00,
 | |
|                 0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7C00,
 | |
|                 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
 | |
|                 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
 | |
|                 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
 | |
|                 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
 | |
|                 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
 | |
|                 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
 | |
|                 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
 | |
|                 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | |
|                 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | |
|                 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | |
|                 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | |
|                 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | |
|                 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
 | |
|                 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100,
 | |
|                 0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00,
 | |
|                 0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFC00,
 | |
|                 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
 | |
|                 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
 | |
|                 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
 | |
|                 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
 | |
|                 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
 | |
|                 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
 | |
|                 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
 | |
|             };
 | |
| 
 | |
|             private static readonly sbyte[] ShiftTable =
 | |
|             {
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
 | |
|                 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
 | |
|                 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
 | |
|                 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13,
 | |
|             };
 | |
| 
 | |
|             /// <summary>
 | |
|             /// Converts a float (hiding in a uint) to a half (hiding in a ushort).
 | |
|             /// </summary>
 | |
|             /// <param name="f">The float to convert</param>
 | |
| 			/// <param name="rounding">Rounding mode</param>
 | |
|             /// <returns>The half result</returns>
 | |
|             [DebuggerStepThrough]
 | |
|             private static ushort FloatToHalf(uint f, int rounding)
 | |
|             {
 | |
|                 var exponentAndSign = f >> 23;
 | |
|                 var shift = ShiftTable[exponentAndSign];
 | |
| 
 | |
|                 var result = (uint)(BaseTable[exponentAndSign] + (ushort)((f & 0x7FFFFFu) >> shift));
 | |
| 
 | |
|                 // Check if the result is not Inf or NaN.
 | |
|                 var isFinite = (result & 0x7C00) != 0x7C00;
 | |
|                 var isNegative = (result & 0x8000) != 0;
 | |
| 
 | |
|                 if (rounding == (int)RoundingMode.FROUND_NINT_NOEXC)
 | |
|                 {
 | |
|                     var fWithRoundingBitPreserved = (f & 0x7FFFFFu) >> (shift - 1);
 | |
| 
 | |
|                     if ((exponentAndSign & 0xFF) == 102)
 | |
|                     {
 | |
|                         result++;
 | |
|                     }
 | |
|                     if (isFinite && ((fWithRoundingBitPreserved & 0x1u) != 0))
 | |
|                     {
 | |
|                         result++;
 | |
|                     }
 | |
|                 }
 | |
|                 else if (rounding == (int)RoundingMode.FROUND_TRUNC_NOEXC)
 | |
|                 {
 | |
|                     if (!isFinite)
 | |
|                     {
 | |
|                         result -= (uint)(~shift & 0x1);
 | |
|                     }
 | |
|                 }
 | |
|                 else if (rounding == (int)RoundingMode.FROUND_CEIL_NOEXC)
 | |
|                 {
 | |
|                     if (isFinite && !isNegative)
 | |
|                     {
 | |
|                         if ((exponentAndSign <= 102) && (exponentAndSign != 0))
 | |
|                         {
 | |
|                             result++;
 | |
|                         }
 | |
|                         else if ((f & 0x7FFFFFu & ((1u << shift) - 1u)) != 0)
 | |
|                         {
 | |
|                             result++;
 | |
|                         } 
 | |
|                     }
 | |
| 
 | |
|                     var resultIsNegativeInf = (result == 0xFC00);
 | |
|                     var inputIsNotNegativeInfOrNan = (exponentAndSign != 0x1FF);
 | |
| 
 | |
|                     if (resultIsNegativeInf && inputIsNotNegativeInfOrNan)
 | |
|                     {
 | |
|                         result--;
 | |
|                     }
 | |
|                 }
 | |
|                 else if (rounding == (int)RoundingMode.FROUND_FLOOR_NOEXC)
 | |
|                 {
 | |
|                     if (isFinite && isNegative)
 | |
|                     {
 | |
|                         if ((exponentAndSign <= 358) && (exponentAndSign != 256))
 | |
|                         {
 | |
|                             result++;
 | |
|                         }
 | |
|                         else if ((f & 0x7FFFFFu & ((1u << shift) - 1u)) != 0)
 | |
|                         {
 | |
|                             result++;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     var resultIsPositiveInf = (result == 0x7C00);
 | |
|                     var inputIsNotPositiveInfOrNan = (exponentAndSign != 0xFF);
 | |
| 
 | |
|                     if (resultIsPositiveInf && inputIsNotPositiveInfOrNan)
 | |
|                     {
 | |
|                         result--;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 return (ushort)result;
 | |
|             }
 | |
| 
 | |
|             /// <summary>
 | |
|             /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst.
 | |
|             ///
 | |
|             /// Rounding is done according to the rounding parameter, which can be one of:
 | |
|             /// </summary>
 | |
|             /// <remarks>
 | |
|             /// **** cvtps2ph xmm, xmm, imm
 | |
|             /// </remarks>
 | |
| 			/// <param name="a">Vector a</param>
 | |
| 			/// <param name="rounding">Rounding mode</param>
 | |
| 			/// <returns>Vector</returns>
 | |
|             [DebuggerStepThrough]
 | |
|             public static v128 cvtps_ph(v128 a, int rounding)
 | |
|             {
 | |
|                 if (rounding == (int)RoundingMode.FROUND_RINT_NOEXC)
 | |
|                 {
 | |
|                     switch (MXCSR & MXCSRBits.RoundingControlMask)
 | |
|                     {
 | |
|                         case MXCSRBits.RoundToNearest:
 | |
|                             rounding = (int)RoundingMode.FROUND_NINT_NOEXC;
 | |
|                             break;
 | |
|                         case MXCSRBits.RoundDown:
 | |
|                             rounding = (int)RoundingMode.FROUND_FLOOR_NOEXC;
 | |
|                             break;
 | |
|                         case MXCSRBits.RoundUp:
 | |
|                             rounding = (int)RoundingMode.FROUND_CEIL_NOEXC;
 | |
|                             break;
 | |
|                         case MXCSRBits.RoundTowardZero:
 | |
|                             rounding = (int)RoundingMode.FROUND_TRUNC_NOEXC;
 | |
|                             break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 return new v128(FloatToHalf(a.UInt0, rounding), FloatToHalf(a.UInt1, rounding), FloatToHalf(a.UInt2, rounding), FloatToHalf(a.UInt3, rounding), 0, 0, 0, 0);
 | |
|             }
 | |
| 
 | |
|             /// <summary>
 | |
|             /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst.
 | |
|             ///
 | |
|             /// Rounding is done according to the rounding parameter, which can be one of:
 | |
|             /// </summary>
 | |
|             /// <remarks>
 | |
|             /// **** cvtps2ph xmm, ymm, imm
 | |
|             /// </remarks>
 | |
| 			/// <param name="a">Vector a</param>
 | |
| 			/// <param name="rounding">Rounding mode</param>
 | |
| 			/// <returns>Vector</returns>
 | |
|             [DebuggerStepThrough]
 | |
|             public static v128 mm256_cvtps_ph(v256 a, int rounding)
 | |
|             {
 | |
|                 if (rounding == (int)RoundingMode.FROUND_RINT_NOEXC)
 | |
|                 {
 | |
|                     switch (MXCSR & MXCSRBits.RoundingControlMask)
 | |
|                     {
 | |
|                         case MXCSRBits.RoundToNearest:
 | |
|                             rounding = (int)RoundingMode.FROUND_NINT_NOEXC;
 | |
|                             break;
 | |
|                         case MXCSRBits.RoundDown:
 | |
|                             rounding = (int)RoundingMode.FROUND_FLOOR_NOEXC;
 | |
|                             break;
 | |
|                         case MXCSRBits.RoundUp:
 | |
|                             rounding = (int)RoundingMode.FROUND_CEIL_NOEXC;
 | |
|                             break;
 | |
|                         case MXCSRBits.RoundTowardZero:
 | |
|                             rounding = (int)RoundingMode.FROUND_TRUNC_NOEXC;
 | |
|                             break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 return new v128(FloatToHalf(a.UInt0, rounding), FloatToHalf(a.UInt1, rounding), FloatToHalf(a.UInt2, rounding), FloatToHalf(a.UInt3, rounding), FloatToHalf(a.UInt4, rounding), FloatToHalf(a.UInt5, rounding), FloatToHalf(a.UInt6, rounding), FloatToHalf(a.UInt7, rounding));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 |