112 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
		
		
			
		
	
	
			112 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
|  | // | ||
|  | // GLSL textureless classic 2D noise "cnoise", | ||
|  | // with an RSL-style periodic variant "pnoise". | ||
|  | // Author:  Stefan Gustavson (stefan.gustavson@liu.se) | ||
|  | // Version: 2011-08-22 | ||
|  | // | ||
|  | // Many thanks to Ian McEwan of Ashima Arts for the | ||
|  | // ideas for permutation and gradient selection. | ||
|  | // | ||
|  | // Copyright (c) 2011 Stefan Gustavson. All rights reserved. | ||
|  | // Distributed under the MIT license. See LICENSE file. | ||
|  | // https://github.com/stegu/webgl-noise | ||
|  | // | ||
|  | 
 | ||
|  | using static Unity.Mathematics.math; | ||
|  | 
 | ||
|  | namespace Unity.Mathematics | ||
|  | { | ||
|  |     public static partial class noise | ||
|  |     { | ||
|  |         /// <summary> | ||
|  |         /// Classic Perlin noise | ||
|  |         /// </summary> | ||
|  |         /// <param name="P">Point on a 2D grid of gradient vectors.</param> | ||
|  |         /// <returns>Noise value.</returns> | ||
|  |         public static float cnoise(float2 P) | ||
|  |         { | ||
|  |             float4 Pi = floor(P.xyxy) + float4(0.0f, 0.0f, 1.0f, 1.0f); | ||
|  |             float4 Pf = frac(P.xyxy) - float4(0.0f, 0.0f, 1.0f, 1.0f); | ||
|  |             Pi = mod289(Pi); // To avoid truncation effects in permutation | ||
|  |             float4 ix = Pi.xzxz; | ||
|  |             float4 iy = Pi.yyww; | ||
|  |             float4 fx = Pf.xzxz; | ||
|  |             float4 fy = Pf.yyww; | ||
|  | 
 | ||
|  |             float4 i = permute(permute(ix) + iy); | ||
|  | 
 | ||
|  |             float4 gx = frac(i * (1.0f / 41.0f)) * 2.0f - 1.0f; | ||
|  |             float4 gy = abs(gx) - 0.5f; | ||
|  |             float4 tx = floor(gx + 0.5f); | ||
|  |             gx = gx - tx; | ||
|  | 
 | ||
|  |             float2 g00 = float2(gx.x, gy.x); | ||
|  |             float2 g10 = float2(gx.y, gy.y); | ||
|  |             float2 g01 = float2(gx.z, gy.z); | ||
|  |             float2 g11 = float2(gx.w, gy.w); | ||
|  | 
 | ||
|  |             float4 norm = taylorInvSqrt(float4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); | ||
|  |             g00 *= norm.x; | ||
|  |             g01 *= norm.y; | ||
|  |             g10 *= norm.z; | ||
|  |             g11 *= norm.w; | ||
|  | 
 | ||
|  |             float n00 = dot(g00, float2(fx.x, fy.x)); | ||
|  |             float n10 = dot(g10, float2(fx.y, fy.y)); | ||
|  |             float n01 = dot(g01, float2(fx.z, fy.z)); | ||
|  |             float n11 = dot(g11, float2(fx.w, fy.w)); | ||
|  | 
 | ||
|  |             float2 fade_xy = fade(Pf.xy); | ||
|  |             float2 n_x = lerp(float2(n00, n01), float2(n10, n11), fade_xy.x); | ||
|  |             float n_xy = lerp(n_x.x, n_x.y, fade_xy.y); | ||
|  |             return 2.3f * n_xy; | ||
|  |         } | ||
|  | 
 | ||
|  |         /// <summary> | ||
|  |         /// Classic Perlin noise, periodic variant | ||
|  |         /// </summary> | ||
|  |         /// <param name="P">Point on a 2D grid of gradient vectors.</param> | ||
|  |         /// <param name="rep">Period of repetition.</param> | ||
|  |         /// <returns>Noise value.</returns> | ||
|  |         public static float pnoise(float2 P, float2 rep) | ||
|  |         { | ||
|  |             float4 Pi = floor(P.xyxy) + float4(0.0f, 0.0f, 1.0f, 1.0f); | ||
|  |             float4 Pf = frac(P.xyxy) - float4(0.0f, 0.0f, 1.0f, 1.0f); | ||
|  |             Pi = fmod(Pi, rep.xyxy); // To create noise with explicit period | ||
|  |             Pi = mod289(Pi); // To avoid truncation effects in permutation | ||
|  |             float4 ix = Pi.xzxz; | ||
|  |             float4 iy = Pi.yyww; | ||
|  |             float4 fx = Pf.xzxz; | ||
|  |             float4 fy = Pf.yyww; | ||
|  | 
 | ||
|  |             float4 i = permute(permute(ix) + iy); | ||
|  | 
 | ||
|  |             float4 gx = frac(i * (1.0f / 41.0f)) * 2.0f - 1.0f; | ||
|  |             float4 gy = abs(gx) - 0.5f; | ||
|  |             float4 tx = floor(gx + 0.5f); | ||
|  |             gx = gx - tx; | ||
|  | 
 | ||
|  |             float2 g00 = float2(gx.x, gy.x); | ||
|  |             float2 g10 = float2(gx.y, gy.y); | ||
|  |             float2 g01 = float2(gx.z, gy.z); | ||
|  |             float2 g11 = float2(gx.w, gy.w); | ||
|  | 
 | ||
|  |             float4 norm = taylorInvSqrt(float4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); | ||
|  |             g00 *= norm.x; | ||
|  |             g01 *= norm.y; | ||
|  |             g10 *= norm.z; | ||
|  |             g11 *= norm.w; | ||
|  | 
 | ||
|  |             float n00 = dot(g00, float2(fx.x, fy.x)); | ||
|  |             float n10 = dot(g10, float2(fx.y, fy.y)); | ||
|  |             float n01 = dot(g01, float2(fx.z, fy.z)); | ||
|  |             float n11 = dot(g11, float2(fx.w, fy.w)); | ||
|  | 
 | ||
|  |             float2 fade_xy = fade(Pf.xy); | ||
|  |             float2 n_x = lerp(float2(n00, n01), float2(n10, n11), fade_xy.x); | ||
|  |             float n_xy = lerp(n_x.x, n_x.y, fade_xy.y); | ||
|  |             return 2.3f * n_xy; | ||
|  |         } | ||
|  |     } | ||
|  | } |